

© Patrick Kühn

Governing a Web Service using IdentityNow

In today’s infrastructure there is usually one or more web service or cloud based
system used by the company. To govern the access to this cloud based system,
it is helpful to connect the existing web services to an existing Identity and
Access Management tool.

Graph.1: Architecture for the connection to the cloud solution.

In this example I will show you how to simply add a system to an IdentityNow
instance using the Web Services Connector provided by SailPoint.

Preconditions: API Documentation

The precondition for connecting the cloud based solution to IdentityNow is a web
facing application programming interface (API), which will disclose information
about the accounts and entitlements on the system on hand.
This API is usually secured and you need to implement more complex security
into this connector. To keep this example simple, this will not be covered by this
article.

© Patrick Kühn

Here we will use an API which will produce JSON objects and has the following
endpoints to receive data from the system.

These are the endpoints for the cloud solution, we are going to connect to
IdentityNow (your solution could look similar to this).

Test Connection

The first implemented operation is going to test the connection from your Virtual
Appliance to your cloud solution. As seen in the list of endpoints, there is an
endpoint available to check the connectivity with the route /ping. In your case
this could be an endpoint to check the used authorization token.
To implement this, we need to add a new operation from the type “Test
Connection” and we will name it “Ping”.

Graph. 2: The configuration for Ping.

© Patrick Kühn

We will assume, that a successful connection will result in a response with the
success code of 2**. This needs to be added in the Response Information tab.

Graph. 3: Response Information for testing the connection.

After successfully connecting the API to IdentityNow, the next step is to
aggregate the entitlements.

Entitlement Aggregation

Before we are able to implement the entitlements, we need to inspect the
available endpoints to get the information about entitlements.

First we need to get a list of entitlements available. The following endpoint does
give us an array of entitlements.

© Patrick Kühn

Graph. 4: Endpoint for entitlement list.

© Patrick Kühn

To implement this entitlement list, we need to add a new operation with the type
“Entitlement Aggregation”.

Graph. 5: Operation for entitlement aggregation.

As seen in the endpoint documentation, the entitlements will all be in an array
named “items” and the response code will be 200 upon a successful request.
Implementing this in the Response Information tab looks as follows:

Graph. 6: Response information for entitlement aggregation.

The API implements a pagination which we will also need to implement. Gladly
SailPoint offers a decent scripting language to realize this.

In this endpoint we get 500 items with every request. The path parameter offset
will define, how many items we will skip for this request. So the logic for offset
needs to be: 0 -> 500 -> 1000 -> … until there are less than 500 items
returned.

© Patrick Kühn

The implementation can look as follows:

Graph. 7: Implementation for pagination.

In the first line we are defining the parameter with the limitation of items
aggregated during every request.
The second line is the check for termination. If less than 500 entitlements are
aggregated, there will be no more request.
The third line calculates the offset using the previous offset.
And the last line calculates the new application URL with the offset parameter set
to the value to skip items.

After adding the information needed to make the request, we need to add the
mapping for the data to entitlement attributes. In this example we will not show
how to modify the schema in the source, to add and remove needed entitlement
attributes.

Since we added the items array to the root path in the previous step, we are now
able to access the values from the response directly in the response mapping.

Graph. 8: Response mapping for entitlements

© Patrick Kühn

Just the name and the id for the entitlements will not be enough for governing
them in IdentityNow. With a second request for every entitlement, we can add
the attributes to the corresponding entitlement.

First we will check the documentation for the specifications on the endpoint.

Graph. 9: Endpoint for entitlement details.

© Patrick Kühn

With this information we can add a second Entitlement Aggregation operation in
IdentityNow. It is crucial that this operation is added after the first aggregation
as we need to use the response of the first request to perform these requests.

Graph. 10: General information on entitlement detail aggregation.

Here we can see that the response information from the previous aggregation
can be used to perform the detail aggregation for entitlements. In this case we
will use the variable id in the URL which looks like this: $response.id$.

Since this request does not have a list of items, the Response Information will
only contain the success code for the request.

Graph. 11: Response information for detailed entitlement aggregation.

The only thing left is the Response Mapping for this request. Since we got the id
and the name from the initial response, we only need to map the description and
the owner of this entitlement.

© Patrick Kühn

Graph. 12: Response Mapping for detailed entitlement aggregation.

With that implementation, we are now able to aggregate entitlements and their
detailed information.

The next step is to add accounts to the connector.

Account Aggregation

Account aggregation will work similarly to entitlement aggregation. The example
API uses an endpoint to get a list of all users and an endpoint to get more details
for a single user. In addition to the entitlements, there is an endpoint to get all
entitlements one users has.

The first operation we need to implement is the Account Aggregation to get the
list of users. The following endpoint shows the endpoint in detail.

© Patrick Kühn

Graph. 13: API endpoint to get list of users.

© Patrick Kühn

We will first add a new operation in IdentityNow with the operation type Account
Aggregation.

Graph. 14: General configuration for account aggregation.

Since the response JSON has the same structure as the endpoint for the
entitlements, this will be the same.

Pagination is also handled as it is in the entitlement aggregation, however the
code needs to be altered to the users endpoint and not the entitlements
endpoint.

After adding the initial list accounts we need to add the details for each account.
The API also offers an endpoint for the details for each user account.

© Patrick Kühn

Graph. 15: API endpoint for user account details.

© Patrick Kühn

With the list of id’s we can now get the details for every user by adding an
operation Account Aggregation using the $response.id$ variable to make the call.

Graph. 16: Operation for detailed user account aggregation.

The Response Information will only contain the success code 200 for a successful
call.
The response mapping needs to be configured for the returned JSON object. It is
also possible to add only certain values to be written to IdentityNow. In this
example we want to have everything, except for the cost center.

Graph. 17: Response mapping for detailed user account aggregation.

With this configuration we are now able to aggregate all user accounts with the
needed attributes we want to govern in IdentityNow.

© Patrick Kühn

Adding the entitlements, that each user has is similar to this process. First, we
will have a look at the corresponding API endpoint documentation.

Graph. 18: API endpoint to get a list of entitlements inherited by the user.

© Patrick Kühn

We will first need to add a third operation from the type Account Aggregation.
This Operation also needs to be added after the initial aggregation of the user
list.

Graph. 19: Operation for user account entitlement aggregation.

The Response Information will be the same as for the detailed account attributes
aggregation. However, this time we are not able to add entitlements as the root
path because a list of entitlements in one attribute is needed.

To achieve this, we can add the following mapping.

Graph. 20: Response Mapping for user entitlement aggregation.

With this configuration we are now able to test the connection to the API,
aggregate the entitlements and the accounts. After this step, we are now able to
govern the data within the cloud solution.

Sometimes it can also be useful to aggregate a single account manually. For that
case we will now add the Get Object operation.

© Patrick Kühn

Get Object

Luckily, we can use a lot of the configuration, that we used in the account
aggregation operation. We will use the API endpoints

• /users/{id} and
• /users/{id}/entitlements.

We will add two new operations from the type Get Object calling these
endpoints. This time we do not have the response variable available, however we
can use the native identity.

Graph. 21: Get Object configuration for attributes.

Adding the configuration for the Response Information and the Response
Mapping from the Account Aggregation operation, we can move on to the
entitlements for the user object.

Graph. 22: Get Object configuration for entitlements.

© Patrick Kühn

For this operation we will also add the configuration from the previous account
aggregation operation.

Now the connection between the cloud solution and IdentityNow is set up and we
are able to connect the API, aggregate entitlements, aggregate accounts and
fetch updates on single identities.

This article did not cover security or provisioning for the cloud solution. Also,
modifications to the IdentityNow source schema are not covered.The source code
for the swagger documentation of the API can be found at
https://gist.github.com/DigitalPhilosopher/ca2b926e37ecd072f4fc14a7dd01d1ef.

For more information on IdentityNow, you can visit https://www.sailpoint.com/.

For help on implementing your Identity and Access Management System, you
can reach us at https://www.kogit.de/unternehmen/kontakt-standort/.

